Corneal endothelial integrity in aging mice lacking superoxide dismutase-1 and/or superoxide dismutase-3
نویسنده
چکیده
PURPOSE To evaluate the age-induced changes in corneal endothelial morphology in mice lacking the cytosolic copper-zinc superoxide dismutase (SOD-1), the interstitial extracellular superoxide dismutase (SOD-3), or both of these SOD isoenzymes. METHODS The central corneal endothelial morphologies of old C57BL-6J wild type (n=19), SOD-1 null (n=16), SOD-3 null (n=15), and SOD1/3 null (n=11) mice were evaluated using alizarin red staining and light microscope photographs. For comparison, young endothelia from the same genotypes were evaluated similarly. The levels of corneal reactive oxygen species and nitrogen species in all four genotypes were quantified using fluorimetry with 2',7'-dichlorodihydrofluorescein diacetate and OxyBURST. RESULTS In accordance with our previous findings, the mean corneal endothelial cell area was larger in the SOD-3 null genotype than in the wild type mice. The SOD-1/3 null genotype had similar cell sizes as the SOD-3 null mice but had a more irregular morphology at an older age. Apparently, these irregularities develop with time as they are not seen in young animals. The SOD-1 null mice did not differ from the wild type mice in corneal endothelial morphology. Elevated levels of reactive oxygen species were seen in SOD-1 null and SOD-3 null corneas, and elevated superoxide levels were seen in all three knockout genotypes. CONCLUSIONS The increased spontaneous age-related enlargement of corneal endothelial cells seen in the absence of SOD-3 is associated with a more irregular cell pattern when combined with a lack of SOD-1. This indicates more cellular movements and ongoing repair in the SOD-1/3 null genotype and possibly a more vulnerable corneal endothelium. SOD-3 and SOD-1 appear to have functions in preserving corneal endothelial integrity in aging.
منابع مشابه
Corneal endothelial integrity in mice lacking extracellular superoxide dismutase.
PURPOSE To evaluate corneal endothelial morphology in mice without secreted extracellular superoxide dismutase (SOD) in normal ageing and in a lipopolysaccharide (LPS)-induced inflammation model and to measure the contents of SOD isoenzymes in the mouse cornea and the superoxide radical concentrations in corneas with and without extracellular SOD. METHODS The central corneal endothelium of wi...
متن کاملHeterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging.
The goal of this study was to test the hypothesis that loss of a single copy of the gene for CuZn superoxide dismutase (CuZnSOD) increases vascular superoxide levels and produces vascular dysfunction with aging. Responses of carotid arteries from young (7 months) and old (22 to 24 months of age) heterozygous CuZnSOD-deficient (CuZnSOD(+/-)) mice and their wild-type (CuZnSOD(+/+)) littermates we...
متن کاملDeletion of p66 Gene Protects Against Age-Related Endothelial Dysfunction
Background—Enhanced production of reactive oxygen species (ROS) has been recognized as the major determinant of age-related endothelial dysfunction. The p66 protein controls cellular responses to oxidative stress. Mice lacking p66 (p66 / ) have increased resistance to ROS and a 30% prolonged life span. The present study investigates age-dependent changes of endothelial function in this model. M...
متن کاملDeletion of p66shc gene protects against age-related endothelial dysfunction.
BACKGROUND Enhanced production of reactive oxygen species (ROS) has been recognized as the major determinant of age-related endothelial dysfunction. The p66shc protein controls cellular responses to oxidative stress. Mice lacking p66shc (p66shc-/-) have increased resistance to ROS and a 30% prolonged life span. The present study investigates age-dependent changes of endothelial function in this...
متن کاملRole of superoxide–nitric oxide interactions in the accelerated age-related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Vision
دوره 14 شماره
صفحات -
تاریخ انتشار 2008